CCS Site Characterization Program

Characterization of Most Promising Carbon
Capture and Sequestration Formations in the
Central Rocky Mountain Region
(RMCCS)

Acknowledgements

- Many thanks to the U.S. Department of Energy and NETL for supporting this project
- We express our gratitude also to our many industry partners, who have committed a great deal of time, funding and other general support for these projects
- The work presented today is co-authored by Brian McPherson and Vince Matthews, with contributions from many partners in the RMCCS project

Presentation Outline

- Major Goals and Context (Why)
- Outcomes and Deliverables (What)
- Project Team and Plan (How)
- Budget and Cost-Share

Broad Goals: "The goals are focused on <u>reservoir</u> <u>characterization, storage potential</u>, and large-scale injection, which are tied directly to the Program goal of achieving 99 percent storage permanence."

- NETL Carbon Sequestration Technology Roadmap and Program Plan

Regional Goal:

Thoroughly characterize the most promising geologic storage targets within the southwestern U.S. and the Central Rocky Mountain region in particular.

Regional Goal:

Thoroughly characterize the most promising geologic storage targets within the southwestern U.S. and the Central Rocky Mountain region in particular.

Period	Forma	ation / Member	Thickness (feet)	Lith.
	Mancos	Blue Gate Sh	4800	蓋
	Shale	Frontier Ss	100	
H		Mowry Shale	30	
CRET	Dak	ota Sandstone	75	
[]	Cedar Mtn Fm	Upper member	75	
	WILL I'III	Buckhorn Cg Mbr	40	
<i>C</i>)	Morr	ison Formation	600) }
JURASSIC	Curtis / Summerville		100	
RA	Entr	ada Formation	130	
JU	Carı	nel Formation	70	
	Navajo Sandstone		650	
C	Chinle	Upper member	150	
SSI	Fm	Gartra Grit Mbr	60	
TRIASSIC	Моє	enkopi Fm	500	
PENN PERM	Р	ark City Fm	150	
PENN	We	ber Sandstone	900	

Some Specific Technical Goals:

- (1) optimization of capacity estimation
- (2) optimization of monitoring design especially effective spatial coverage and survey/measurement frequency
- (3) optimization of simulation models especially alignment of spatial and temporal scales of models with those of monitoring technologies
- (4) optimization of risk assessment

We anticipate that explicit focus on improving characterization methodologies can create major improvements of these four critical CCS activities.

Presentation Outline

- Major Goals and Context (Why)
- Outcomes and Deliverables (What)
- Project Team and Plan (How)
- Budget and Cost-Share

First and foremost, the tasks, major activities, and deliverables:

Task 1.0 Project Management

- Updated Project Management Plan
- NEPA and permitting
- Education and Outreach begins
- Copies of all permits, including summary topical report of acquisition protocols

Task 2.0 Assess Regional Significance of the Dakota, Entrada, and Weber Formations

- Gather all available data, esp. but not limited to public information
- Regional Models and Analyses
- Evaluate Regional Capacity and Significance (Topical Report)
- Update national databases

Task 3.0 Site-Specific Evaluation of the Dakota, Entrada, and Weber Formations

- Drill, Log and Core Deep Well
- Evaluate and Report Sequestration Capacity of Most Promising Formations (Topical Report)
- Develop and Apply Simulation Model Analysis of Most Promising Formations

Task 4.0 Conduct Risk Assessment

- Risk Registry for Case Study Site
- Evaluate and Report on Risk Assessment and Mitigation Strategies (Topical Report)

Task 5.0 Final Site Characterization Plan and Protocols

- Finalize Characterization of Most Promising CCS Geologic Formations (Topical Report)
- Final Site Characterization Plan and Protocols Document (Formal and Published)

Task 6.0 Develop a well bore management and mitigation strategy

Same deliverables as listed under task 4

Task 7.0 Optimize Reservoir Engineering to Maximize CO₂ Injection/Produced Fluid Beneficial Use

• Develop and Report on Reservoir Engineering Optimization Strategies (Topical Report)

First and foremost, the deliverables:

Task 1.0 Project Management

- Updated Project Management Plan
- NEPA and permitting
- Education and Outreach begins
- Copies of all permits, including summary topical report of acquisition protocols

Task 2.0 Assess Regional Significance of the Dakota, Entrada, and Weber Formations

- Gather all available data, esp. but not limited to public information
- Regional Models and Analyses
- Evaluate Regional Capacity and Significance (Topical Report)
- Update national databases

Task 3.0 Site-Specific Evaluation of the Dakota, Entrada, and Weber Formations

- Drill, Log and Core Deep Well
- Evaluate Sequestration Capacity of Most Promising Formations (Topical Report)
- Simulation Model Analysis of Most Promising Formations (Topical Report)

Task 4.0 Conduct Risk Assessment

- Risk Registry for Case Study Site
- Develop Risk Assessment and Mitigation Strategies (Topical Report)

Task 5.0 Final Site Characterization Plan and Protocols

- Finalize Characterization of Most Promising CCS Geologic Formations (Topical Report)
- Final Site Characterization Plan and Protocols Document (Formal and Published)

Task 6.0 Develop a well bore management and mitigation strategy

- Same deliverables as listed under task 4
- Task 7.0 Optimize Reservoir Engineering to Maximize CO₂ Injection/Produced Fluid Beneficial Use
 - Develop and Report on Reservoir Engineering Optimization Strategies (Topical Report)

Some Critical Technical Goals and Outcomes:

optimization of capacity estimation

Optimize Capacity Estimation: Number of Years for Specific Sources

Annual mass of CO₂ emissions from power plants, in million tons per year (Mt/y)

EXAMPLE: Regional Emissions

Point Sources:

~318 million tons CO₂ per year

Case Study Area

Optimize Capacity Estimation: Number of Years for Specific Sources

Annual mass of CO₂ emissions from power plants, in million tons per year (Mt/y)

EXAMPLE: Regional Emissions

Point Sources:

~318 million tons CO₂ per year

Optimize Capacity Estimation:

Number of Years for

Specific Sources

EXAMPLE: Regional Emissions

Point Sources:

~318 million tons CO₂ per year

700,000 million metric tons

318 million metric tons/yr

From Atlas II:

Saline Formation CO ₂ Storage Resource by State (million metric tons)					
State	Low CO ₂ Storage Resource	High CO ₂ Storage Resource			
Arizona	199	752			
Colorado	18,828	75,313			
Kansas	8	9			
Nebraska	87	348			
New Mexico	33,054	132,215			
Oklahoma	2	9			
Texas	11,700	46,800			
Utah	24,934	99,305			
Wyoming	4,909	19,636			

≈ 2,200 *years*

Maximum estimated SW saline capacity: 700,000 million metric tons

Optimize Capacity
Estimation:
Number of Years for
Specific Sources

Example: CO₂ Emissions in Colorado

85 Mt total for 1999

from Vanessa Lintz, CGS

Optimize Capacity
Estimation:
Number of Years for
Specific Sources

Example: CO₂ Emissions in Colorado

Optimize Capacity
Estimation:
Number of Years for
Specific Sources

Optimize Capacity
Estimation:
Number of Years for
Specific Sources

Total Capacity Estimate:

(saline formations only)

 $\frac{680,000 \ Mtons}{80 \ Mtons/yr} \approx 8500 \ years$

Example: CO₂ Emissions in Colorado

2000 Emissions (Mt)		Storage Capacity - New Estimates			
		Oil & Gas	Coal Beds	Saline Aquifers	
Canon City	9.4	0	493	122,118	
Craig	14.4	123	11,059	46,209	
Denver	14.1	557	602	129,138	
Fort Morgan	4.1	164	0	43,700	
Ignacio	31.5	186	2,809	92,142	
Palisade	0.8	116	1,798	132,330	
Rangely	3.4	740	1,037	102.579	
Total	~80	1,886	17,798	~680,000	

EXAMPLE: Utah Emissions & Capacity

Source : ~35 million metric tons CO₂ per year

Utah's CO₂ Sinks and Capacities:

Saline Formation CO ₂ Storage Resource by State (million metric tons)					
State	Low CO ₂ Storage Resource	High CO ₂ Storage Resource			
Arizona	199	752			
Colorado	18,828	75,313			
Kansas	8	9			
Nebraska	87	348			
New Mexico	33,054	132,215			
Oklahoma	2	9			
Texas	11,700	46,900			
Utah	24,934	99,305			
Wyoming	4,909	19 636			

From Atlas II

While we can evaluate capacity (in years of emissions) based on broad and regional-scale characterization, site-specific analyses are hampered by the high cost of high resolution characterization.

The point: the uncertainty and regional nature of these capacity estimates (in years) are significant and can be reduced!

Some Critical Technical Goals and Outcomes:

- optimization of capacity estimation
- optimization of monitoring design especially effective spatial coverage and survey/measurement frequency

Better Characterization Provides More Effective Monitoring Design

Monitoring for Detecting CO₂ in non-Targets:

- Groundwater chemistry (non-target reservoirs)
- Surface CO₂ chamber flux
- Shallow CO₂ "piezometers" for sub-bio flux
- Remote sensing / LandSat Imaging
- Coupled process reservoir modeling

Monitoring for Tracking CO₂ Migration and Fate

- 2-D and/or 3-D seismic reflection
- Vertical seismic profiles (VSP)
- Crosswell seismic imaging
- Passive seismic monitoring/imaging
- Groundwater chemistry (target reservoir)
- In situ pressure, temperature measurements
- In situ bicarbonate detection
- Coupled process reservoir modeling
- Microgravity surveys

Focus monitoring on: resolved risk FEPS or unresolved areas

Some Critical Technical Goals and Outcomes:

- optimization of capacity estimation
- optimization of monitoring design especially effective spatial coverage and survey/measurement frequency
- optimization of simulation models especially alignment of spatial and temporal scales of models with those of monitoring technologies

spatial and temporal resolution of models must match resolution of monitoring technologies - better characterization will help dramatically!

6 km

3.5 km

Some Critical Technical Goals and Outcomes:

- optimization of capacity estimation
- optimization of monitoring design especially effective spatial coverage and survey/measurement frequency
- optimization of simulation models especially alignment of spatial and temporal scales of models with those of monitoring technologies
- optimization of risk assessment

Modified from Guthrie et al.

 Improved site characterization = improved modeling, monitoring, and risk assessment

Top Goal and Deliverable

Top goal:

Based on a site-specific characterization of the case study site near Craig, CO, identify the most effective criteria for ranking potential storage sites throughout the region.

Top Deliverable:

Final Site Characterization Plan and Protocols, Including Site-Selection Criteria

Presentation Outline

- Major Goals and Context (Why)
- Outcomes and Deliverables (What)
- Project Team and Plan (How)
- Budget and Cost-Share

Project Team and Plan

The Plan - Year 1

Characterize the Structure

Build database

Purchase seismic

Process & interpret seismic

Map surface structure

Shoot seismic line

Pick location for drill hole

Permit well

Regarding basic characterization, what do we know so far?

Using: Basic Stratigraphic Knowledge

Retiod	Forma	ntion / Member	Thickness (feet)	Lith.
	Mancos	Blue Gate Sh	4800	
	Shale	Frontier Ss	100	
L		Mowry Shale	30	
CRET	Dak	ota Sandstone	75	
CI	Cedar Mtn Fm	Upper member	75	
	WILL FIII	Buckhorn Cg Mbr	40	
-	Morr	ison Formation	600	× ***
JURASSIC	Curtis	s / Summerville	100	
RA	Entr	ada Formation	130	
JU	Carr	nel Formation	70	
	Nav	ajo Sandstone	650	
Ü	Chinle Fm	Upper member	150	
SSI		Gartra Grit Mbr	60	
TRIASSIC	Moenkopi Fm		500	
ENN PERM	Р	ark City Fm	150	
PENN	We	ber Sandstone	900	

Seal

Reservoir

Using: DEMs

Pink =
outline of
Laramide
"forced
fold"
structure

Using: Satellite Photos

Using: Outcrop Data

Using: Outcrop Data

North

Retiod	Formation / Member		Thickness (feet)	Lith.
	Mancos Shale	Blue Gate Sh	4800	
		Frontier Ss	100	
		Mowry Shale	30	
CRET	Dakota Sandstone		75	
CR	Cedar Mtn Fm	Upper member	75	
		Buckhorn Cg Mbr	40	0 0
JURASSIC	Morrison Formation		600	\ \ \
	Curtis / Summerville		100	
	Entrada Formation		130	
	Carmel Formation		70	
	Navajo Sandstone		650	
PENN PERM TRIASSIC	Chinle Fm	Upper member	150	
		Gartra Grit Mbr	60	
	Moenkopi Fm		500	
PERM	Park City Fm		150	
PENN	Weber Sandstone		900	

Seal

Reservoir

Using: Log Data

The team then: developed structure maps of the Dakota

The team then: developed structure maps of the Entrada

The team then: developed structure maps of the Weber

We also: picked tentative drill sites and transects to evaluate

We also:
picked
tentative
drill sites
and
transects
to
evaluate

We then:
developed
simple
conceptual
models
including
3-D

We then: developed simple conceptual models including 3-D and 2-D structural geology for initial model gridding and analysis

Land
ownership
will
support
project
options
and
flexibility

Project Team and Approach

The Plan - Year 2

Drill Well

Core Shale

Core Sandstones

Sample Waters

Analyze Samples

CO₂ Injectivity Experiments on cores

Continue Engineering Analysis & Reservoir Modeling

Project Team and Approach

The Plan - Year 3

Extend results to Colorado Plateau (Region) Continue Reservoir Simulation:

Storage Volume

CO₂ Migration

Potential Leakage Pathways

Optimization Studies

Final Site Characterization Plan and Protocols

Presentation Outline

- Major Goals and Context (Why)
- Outcomes and Deliverables (What)
- Project Team and Plan (How)
- Budget and Cost-Share

Budget

\$4.8 million Project

\$3.8 million Department of Energy

\$1.0 million from Partners (20%)

Cost-Share by Partners

Tri-State Generation and Transmission- \$300K

Shell Exploration & Production- \$200K

Colorado Geological Survey- \$162K

Schlumberger Carbon Management- \$150K

University of Utah - \$125K

Utah Geological Survey- \$22K

Arizona Geological Survey- \$19K

New Mexico Geological Survey- \$19K

Project Summary

1.0 Project Management (Plan, Organize, Meetings, Finanacials, Prog. Risk, Outreach/Eduction, Permitting)

2.0 Regional Significance of Dakota, Entrada & Weber

Review available data (logs, studies, seismic) to determine capacity and injectivity (sustain 30 MMT of CO₂)

3.0 Site Specific Evaluation of Dakota, Entrada & Weber

Conduct field operations (drill/core well, fluid analyses). Use lab and field data to refine capacity, injectivity and containment.

Period	Formation / Member		Thickness (feet)	Life
CRET	Mancos Shale	Blue Gate Sh	4800	
		Frontier Ss	100	
		Mowry Shale	30)(
	Dakota Sandstone		73 10	
	Cedar Mtn Fm	Upper member	73	1
		Buckhorn Cg Mbr	40	-
JURASSIC	Morrison Formation		600	
	Curtis Formation		100	
	Entrada Formation		100	18
	Carmel Formation		70	
	Navajo Sandstone		650	1
PERM TRIASSIC	Chinle Fm	Upper member	150	
		Gartra Grit Mbr	80	
	Moenkopi Fm		500	
PERM	Park City Fm		tho	
PENN	Weber Sandstone		900	

4.0 Conduct Risk Assessment

Create risk registry, identify site-specific FEPs, evaluate mitigatation strategies and any cost-savings.

5.0 Develop Site Selection Criteria

Compile list of selection criteria based upon site-specific characterization results

6.0 Well bore management

Use data from Task 4.0 to prepare a management plan that will prevent leakage of CO₂ through artificial penetrations (well bores, mines, etc).

7.0 Maximize CO₂ Injection & Uses of Produced Fluids

Develop an engineering plan to optimize well placement for the region to maximize the amount of CO₂ storage based upon results of the characterization study. Develop a produced fluid disposal plan that will integrate mitigation strategies with respect to reservoir pressure stabilization.

